¿Por qué debería ser main () corto?

87

He estado programando durante más de 9 años, y de acuerdo con los consejos de mi primer profesor de programación, siempre mantengo mi función main() extremadamente corta.

Al principio no tenía idea de por qué. Acabo de obedecer sin comprender, para deleite de mis profesores.

Después de ganar experiencia, me di cuenta de que si diseñaba mi código correctamente, tenía una pequeña función main() . Escribir código modularizado y seguir el principio de responsabilidad única permitió que mi código se diseñara en "grupos", y main() no sirvió de nada más que un catalizador para ejecutar el programa.

Hace unas semanas, me puse a mirar el código de fuente de Python y encontré la función main() :

/* Minimal main program -- everything is loaded from the library */

...

int
main(int argc, char **argv)
{
    ...
    return Py_Main(argc, argv);
}

Yay python. Corto main() function == Buen código.

Los profesores de programación tenían razón.

Queriendo mirar más profundamente, eché un vistazo a Py_Main. En su totalidad, se define de la siguiente manera:

/* Main program */

int
Py_Main(int argc, char **argv)
{
    int c;
    int sts;
    char *command = NULL;
    char *filename = NULL;
    char *module = NULL;
    FILE *fp = stdin;
    char *p;
    int unbuffered = 0;
    int skipfirstline = 0;
    int stdin_is_interactive = 0;
    int help = 0;
    int version = 0;
    int saw_unbuffered_flag = 0;
    PyCompilerFlags cf;

    cf.cf_flags = 0;

    orig_argc = argc;           /* For Py_GetArgcArgv() */
    orig_argv = argv;

#ifdef RISCOS
    Py_RISCOSWimpFlag = 0;
#endif

    PySys_ResetWarnOptions();

    while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) {
        if (c == 'c') {
            /* -c is the last option; following arguments
               that look like options are left for the
               command to interpret. */
            command = (char *)malloc(strlen(_PyOS_optarg) + 2);
            if (command == NULL)
                Py_FatalError(
                   "not enough memory to copy -c argument");
            strcpy(command, _PyOS_optarg);
            strcat(command, "\n");
            break;
        }

        if (c == 'm') {
            /* -m is the last option; following arguments
               that look like options are left for the
               module to interpret. */
            module = (char *)malloc(strlen(_PyOS_optarg) + 2);
            if (module == NULL)
                Py_FatalError(
                   "not enough memory to copy -m argument");
            strcpy(module, _PyOS_optarg);
            break;
        }

        switch (c) {
        case 'b':
            Py_BytesWarningFlag++;
            break;

        case 'd':
            Py_DebugFlag++;
            break;

        case '3':
            Py_Py3kWarningFlag++;
            if (!Py_DivisionWarningFlag)
                Py_DivisionWarningFlag = 1;
            break;

        case 'Q':
            if (strcmp(_PyOS_optarg, "old") == 0) {
                Py_DivisionWarningFlag = 0;
                break;
            }
            if (strcmp(_PyOS_optarg, "warn") == 0) {
                Py_DivisionWarningFlag = 1;
                break;
            }
            if (strcmp(_PyOS_optarg, "warnall") == 0) {
                Py_DivisionWarningFlag = 2;
                break;
            }
            if (strcmp(_PyOS_optarg, "new") == 0) {
                /* This only affects __main__ */
                cf.cf_flags |= CO_FUTURE_DIVISION;
                /* And this tells the eval loop to treat
                   BINARY_DIVIDE as BINARY_TRUE_DIVIDE */
                _Py_QnewFlag = 1;
                break;
            }
            fprintf(stderr,
                "-Q option should be '-Qold', "
                "'-Qwarn', '-Qwarnall', or '-Qnew' only\n");
            return usage(2, argv[0]);
            /* NOTREACHED */

        case 'i':
            Py_InspectFlag++;
            Py_InteractiveFlag++;
            break;

        /* case 'J': reserved for Jython */

        case 'O':
            Py_OptimizeFlag++;
            break;

        case 'B':
            Py_DontWriteBytecodeFlag++;
            break;

        case 's':
            Py_NoUserSiteDirectory++;
            break;

        case 'S':
            Py_NoSiteFlag++;
            break;

        case 'E':
            Py_IgnoreEnvironmentFlag++;
            break;

        case 't':
            Py_TabcheckFlag++;
            break;

        case 'u':
            unbuffered++;
            saw_unbuffered_flag = 1;
            break;

        case 'v':
            Py_VerboseFlag++;
            break;

#ifdef RISCOS
        case 'w':
            Py_RISCOSWimpFlag = 1;
            break;
#endif

        case 'x':
            skipfirstline = 1;
            break;

        /* case 'X': reserved for implementation-specific arguments */

        case 'U':
            Py_UnicodeFlag++;
            break;
        case 'h':
        case '?':
            help++;
            break;
        case 'V':
            version++;
            break;

        case 'W':
            PySys_AddWarnOption(_PyOS_optarg);
            break;

        /* This space reserved for other options */

        default:
            return usage(2, argv[0]);
            /*NOTREACHED*/

        }
    }

    if (help)
        return usage(0, argv[0]);

    if (version) {
        fprintf(stderr, "Python %s\n", PY_VERSION);
        return 0;
    }

    if (Py_Py3kWarningFlag && !Py_TabcheckFlag)
        /* -3 implies -t (but not -tt) */
        Py_TabcheckFlag = 1;

    if (!Py_InspectFlag &&
        (p = Py_GETENV("PYTHONINSPECT")) && *p != '
/* Minimal main program -- everything is loaded from the library */

...

int
main(int argc, char **argv)
{
    ...
    return Py_Main(argc, argv);
}
') Py_InspectFlag = 1; if (!saw_unbuffered_flag && (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '
/* Main program */

int
Py_Main(int argc, char **argv)
{
    int c;
    int sts;
    char *command = NULL;
    char *filename = NULL;
    char *module = NULL;
    FILE *fp = stdin;
    char *p;
    int unbuffered = 0;
    int skipfirstline = 0;
    int stdin_is_interactive = 0;
    int help = 0;
    int version = 0;
    int saw_unbuffered_flag = 0;
    PyCompilerFlags cf;

    cf.cf_flags = 0;

    orig_argc = argc;           /* For Py_GetArgcArgv() */
    orig_argv = argv;

#ifdef RISCOS
    Py_RISCOSWimpFlag = 0;
#endif

    PySys_ResetWarnOptions();

    while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) {
        if (c == 'c') {
            /* -c is the last option; following arguments
               that look like options are left for the
               command to interpret. */
            command = (char *)malloc(strlen(_PyOS_optarg) + 2);
            if (command == NULL)
                Py_FatalError(
                   "not enough memory to copy -c argument");
            strcpy(command, _PyOS_optarg);
            strcat(command, "\n");
            break;
        }

        if (c == 'm') {
            /* -m is the last option; following arguments
               that look like options are left for the
               module to interpret. */
            module = (char *)malloc(strlen(_PyOS_optarg) + 2);
            if (module == NULL)
                Py_FatalError(
                   "not enough memory to copy -m argument");
            strcpy(module, _PyOS_optarg);
            break;
        }

        switch (c) {
        case 'b':
            Py_BytesWarningFlag++;
            break;

        case 'd':
            Py_DebugFlag++;
            break;

        case '3':
            Py_Py3kWarningFlag++;
            if (!Py_DivisionWarningFlag)
                Py_DivisionWarningFlag = 1;
            break;

        case 'Q':
            if (strcmp(_PyOS_optarg, "old") == 0) {
                Py_DivisionWarningFlag = 0;
                break;
            }
            if (strcmp(_PyOS_optarg, "warn") == 0) {
                Py_DivisionWarningFlag = 1;
                break;
            }
            if (strcmp(_PyOS_optarg, "warnall") == 0) {
                Py_DivisionWarningFlag = 2;
                break;
            }
            if (strcmp(_PyOS_optarg, "new") == 0) {
                /* This only affects __main__ */
                cf.cf_flags |= CO_FUTURE_DIVISION;
                /* And this tells the eval loop to treat
                   BINARY_DIVIDE as BINARY_TRUE_DIVIDE */
                _Py_QnewFlag = 1;
                break;
            }
            fprintf(stderr,
                "-Q option should be '-Qold', "
                "'-Qwarn', '-Qwarnall', or '-Qnew' only\n");
            return usage(2, argv[0]);
            /* NOTREACHED */

        case 'i':
            Py_InspectFlag++;
            Py_InteractiveFlag++;
            break;

        /* case 'J': reserved for Jython */

        case 'O':
            Py_OptimizeFlag++;
            break;

        case 'B':
            Py_DontWriteBytecodeFlag++;
            break;

        case 's':
            Py_NoUserSiteDirectory++;
            break;

        case 'S':
            Py_NoSiteFlag++;
            break;

        case 'E':
            Py_IgnoreEnvironmentFlag++;
            break;

        case 't':
            Py_TabcheckFlag++;
            break;

        case 'u':
            unbuffered++;
            saw_unbuffered_flag = 1;
            break;

        case 'v':
            Py_VerboseFlag++;
            break;

#ifdef RISCOS
        case 'w':
            Py_RISCOSWimpFlag = 1;
            break;
#endif

        case 'x':
            skipfirstline = 1;
            break;

        /* case 'X': reserved for implementation-specific arguments */

        case 'U':
            Py_UnicodeFlag++;
            break;
        case 'h':
        case '?':
            help++;
            break;
        case 'V':
            version++;
            break;

        case 'W':
            PySys_AddWarnOption(_PyOS_optarg);
            break;

        /* This space reserved for other options */

        default:
            return usage(2, argv[0]);
            /*NOTREACHED*/

        }
    }

    if (help)
        return usage(0, argv[0]);

    if (version) {
        fprintf(stderr, "Python %s\n", PY_VERSION);
        return 0;
    }

    if (Py_Py3kWarningFlag && !Py_TabcheckFlag)
        /* -3 implies -t (but not -tt) */
        Py_TabcheckFlag = 1;

    if (!Py_InspectFlag &&
        (p = Py_GETENV("PYTHONINSPECT")) && *p != '%pre%')
        Py_InspectFlag = 1;
    if (!saw_unbuffered_flag &&
        (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '%pre%')
        unbuffered = 1;

    if (!Py_NoUserSiteDirectory &&
        (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '%pre%')
        Py_NoUserSiteDirectory = 1;

    if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '%pre%') {
        char *buf, *warning;

        buf = (char *)malloc(strlen(p) + 1);
        if (buf == NULL)
            Py_FatalError(
               "not enough memory to copy PYTHONWARNINGS");
        strcpy(buf, p);
        for (warning = strtok(buf, ",");
             warning != NULL;
             warning = strtok(NULL, ","))
            PySys_AddWarnOption(warning);
        free(buf);
    }

    if (command == NULL && module == NULL && _PyOS_optind < argc &&
        strcmp(argv[_PyOS_optind], "-") != 0)
    {
#ifdef __VMS
        filename = decc$translate_vms(argv[_PyOS_optind]);
        if (filename == (char *)0 || filename == (char *)-1)
            filename = argv[_PyOS_optind];

#else
        filename = argv[_PyOS_optind];
#endif
    }

    stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0);

    if (unbuffered) {
#if defined(MS_WINDOWS) || defined(__CYGWIN__)
        _setmode(fileno(stdin), O_BINARY);
        _setmode(fileno(stdout), O_BINARY);
#endif
#ifdef HAVE_SETVBUF
        setvbuf(stdin,  (char *)NULL, _IONBF, BUFSIZ);
        setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ);
        setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ);
#else /* !HAVE_SETVBUF */
        setbuf(stdin,  (char *)NULL);
        setbuf(stdout, (char *)NULL);
        setbuf(stderr, (char *)NULL);
#endif /* !HAVE_SETVBUF */
    }
    else if (Py_InteractiveFlag) {
#ifdef MS_WINDOWS
        /* Doesn't have to have line-buffered -- use unbuffered */
        /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */
        setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ);
#else /* !MS_WINDOWS */
#ifdef HAVE_SETVBUF
        setvbuf(stdin,  (char *)NULL, _IOLBF, BUFSIZ);
        setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ);
#endif /* HAVE_SETVBUF */
#endif /* !MS_WINDOWS */
        /* Leave stderr alone - it should be unbuffered anyway. */
    }
#ifdef __VMS
    else {
        setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ);
    }
#endif /* __VMS */

#ifdef __APPLE__
    /* On MacOS X, when the Python interpreter is embedded in an
       application bundle, it gets executed by a bootstrapping script
       that does os.execve() with an argv[0] that's different from the
       actual Python executable. This is needed to keep the Finder happy,
       or rather, to work around Apple's overly strict requirements of
       the process name. However, we still need a usable sys.executable,
       so the actual executable path is passed in an environment variable.
       See Lib/plat-mac/bundlebuiler.py for details about the bootstrap
       script. */
    if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '%pre%')
        Py_SetProgramName(p);
    else
        Py_SetProgramName(argv[0]);
#else
    Py_SetProgramName(argv[0]);
#endif
    Py_Initialize();

    if (Py_VerboseFlag ||
        (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) {
        fprintf(stderr, "Python %s on %s\n",
            Py_GetVersion(), Py_GetPlatform());
        if (!Py_NoSiteFlag)
            fprintf(stderr, "%s\n", COPYRIGHT);
    }

    if (command != NULL) {
        /* Backup _PyOS_optind and force sys.argv[0] = '-c' */
        _PyOS_optind--;
        argv[_PyOS_optind] = "-c";
    }

    if (module != NULL) {
        /* Backup _PyOS_optind and force sys.argv[0] = '-c'
           so that PySys_SetArgv correctly sets sys.path[0] to ''
           rather than looking for a file called "-m". See
           tracker issue #8202 for details. */
        _PyOS_optind--;
        argv[_PyOS_optind] = "-c";
    }

    PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind);

    if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) &&
        isatty(fileno(stdin))) {
        PyObject *v;
        v = PyImport_ImportModule("readline");
        if (v == NULL)
            PyErr_Clear();
        else
            Py_DECREF(v);
    }

    if (command) {
        sts = PyRun_SimpleStringFlags(command, &cf) != 0;
        free(command);
    } else if (module) {
        sts = RunModule(module, 1);
        free(module);
    }
    else {

        if (filename == NULL && stdin_is_interactive) {
            Py_InspectFlag = 0; /* do exit on SystemExit */
            RunStartupFile(&cf);
        }
        /* XXX */

        sts = -1;               /* keep track of whether we've already run __main__ */

        if (filename != NULL) {
            sts = RunMainFromImporter(filename);
        }

        if (sts==-1 && filename!=NULL) {
            if ((fp = fopen(filename, "r")) == NULL) {
                fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n",
                    argv[0], filename, errno, strerror(errno));

                return 2;
            }
            else if (skipfirstline) {
                int ch;
                /* Push back first newline so line numbers
                   remain the same */
                while ((ch = getc(fp)) != EOF) {
                    if (ch == '\n') {
                        (void)ungetc(ch, fp);
                        break;
                    }
                }
            }
            {
                /* XXX: does this work on Win/Win64? (see posix_fstat) */
                struct stat sb;
                if (fstat(fileno(fp), &sb) == 0 &&
                    S_ISDIR(sb.st_mode)) {
                    fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename);
                    fclose(fp);
                    return 1;
                }
            }
        }

        if (sts==-1) {
            /* call pending calls like signal handlers (SIGINT) */
            if (Py_MakePendingCalls() == -1) {
                PyErr_Print();
                sts = 1;
            } else {
                sts = PyRun_AnyFileExFlags(
                    fp,
                    filename == NULL ? "<stdin>" : filename,
                    filename != NULL, &cf) != 0;
            }
        }

    }

    /* Check this environment variable at the end, to give programs the
     * opportunity to set it from Python.
     */
    if (!Py_InspectFlag &&
        (p = Py_GETENV("PYTHONINSPECT")) && *p != '%pre%')
    {
        Py_InspectFlag = 1;
    }

    if (Py_InspectFlag && stdin_is_interactive &&
        (filename != NULL || command != NULL || module != NULL)) {
        Py_InspectFlag = 0;
        /* XXX */
        sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0;
    }

    Py_Finalize();
#ifdef RISCOS
    if (Py_RISCOSWimpFlag)
        fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */
#endif

#ifdef __INSURE__
    /* Insure++ is a memory analysis tool that aids in discovering
     * memory leaks and other memory problems.  On Python exit, the
     * interned string dictionary is flagged as being in use at exit
     * (which it is).  Under normal circumstances, this is fine because
     * the memory will be automatically reclaimed by the system.  Under
     * memory debugging, it's a huge source of useless noise, so we
     * trade off slower shutdown for less distraction in the memory
     * reports.  -baw
     */
    _Py_ReleaseInternedStrings();
#endif /* __INSURE__ */

    return sts;
}
') unbuffered = 1; if (!Py_NoUserSiteDirectory && (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '%pre%') Py_NoUserSiteDirectory = 1; if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '%pre%') { char *buf, *warning; buf = (char *)malloc(strlen(p) + 1); if (buf == NULL) Py_FatalError( "not enough memory to copy PYTHONWARNINGS"); strcpy(buf, p); for (warning = strtok(buf, ","); warning != NULL; warning = strtok(NULL, ",")) PySys_AddWarnOption(warning); free(buf); } if (command == NULL && module == NULL && _PyOS_optind < argc && strcmp(argv[_PyOS_optind], "-") != 0) { #ifdef __VMS filename = decc$translate_vms(argv[_PyOS_optind]); if (filename == (char *)0 || filename == (char *)-1) filename = argv[_PyOS_optind]; #else filename = argv[_PyOS_optind]; #endif } stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0); if (unbuffered) { #if defined(MS_WINDOWS) || defined(__CYGWIN__) _setmode(fileno(stdin), O_BINARY); _setmode(fileno(stdout), O_BINARY); #endif #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ); #else /* !HAVE_SETVBUF */ setbuf(stdin, (char *)NULL); setbuf(stdout, (char *)NULL); setbuf(stderr, (char *)NULL); #endif /* !HAVE_SETVBUF */ } else if (Py_InteractiveFlag) { #ifdef MS_WINDOWS /* Doesn't have to have line-buffered -- use unbuffered */ /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */ setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); #else /* !MS_WINDOWS */ #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IOLBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif /* HAVE_SETVBUF */ #endif /* !MS_WINDOWS */ /* Leave stderr alone - it should be unbuffered anyway. */ } #ifdef __VMS else { setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ); } #endif /* __VMS */ #ifdef __APPLE__ /* On MacOS X, when the Python interpreter is embedded in an application bundle, it gets executed by a bootstrapping script that does os.execve() with an argv[0] that's different from the actual Python executable. This is needed to keep the Finder happy, or rather, to work around Apple's overly strict requirements of the process name. However, we still need a usable sys.executable, so the actual executable path is passed in an environment variable. See Lib/plat-mac/bundlebuiler.py for details about the bootstrap script. */ if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '%pre%') Py_SetProgramName(p); else Py_SetProgramName(argv[0]); #else Py_SetProgramName(argv[0]); #endif Py_Initialize(); if (Py_VerboseFlag || (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) { fprintf(stderr, "Python %s on %s\n", Py_GetVersion(), Py_GetPlatform()); if (!Py_NoSiteFlag) fprintf(stderr, "%s\n", COPYRIGHT); } if (command != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } if (module != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' so that PySys_SetArgv correctly sets sys.path[0] to '' rather than looking for a file called "-m". See tracker issue #8202 for details. */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind); if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) && isatty(fileno(stdin))) { PyObject *v; v = PyImport_ImportModule("readline"); if (v == NULL) PyErr_Clear(); else Py_DECREF(v); } if (command) { sts = PyRun_SimpleStringFlags(command, &cf) != 0; free(command); } else if (module) { sts = RunModule(module, 1); free(module); } else { if (filename == NULL && stdin_is_interactive) { Py_InspectFlag = 0; /* do exit on SystemExit */ RunStartupFile(&cf); } /* XXX */ sts = -1; /* keep track of whether we've already run __main__ */ if (filename != NULL) { sts = RunMainFromImporter(filename); } if (sts==-1 && filename!=NULL) { if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n", argv[0], filename, errno, strerror(errno)); return 2; } else if (skipfirstline) { int ch; /* Push back first newline so line numbers remain the same */ while ((ch = getc(fp)) != EOF) { if (ch == '\n') { (void)ungetc(ch, fp); break; } } } { /* XXX: does this work on Win/Win64? (see posix_fstat) */ struct stat sb; if (fstat(fileno(fp), &sb) == 0 && S_ISDIR(sb.st_mode)) { fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename); fclose(fp); return 1; } } } if (sts==-1) { /* call pending calls like signal handlers (SIGINT) */ if (Py_MakePendingCalls() == -1) { PyErr_Print(); sts = 1; } else { sts = PyRun_AnyFileExFlags( fp, filename == NULL ? "<stdin>" : filename, filename != NULL, &cf) != 0; } } } /* Check this environment variable at the end, to give programs the * opportunity to set it from Python. */ if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '%pre%') { Py_InspectFlag = 1; } if (Py_InspectFlag && stdin_is_interactive && (filename != NULL || command != NULL || module != NULL)) { Py_InspectFlag = 0; /* XXX */ sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0; } Py_Finalize(); #ifdef RISCOS if (Py_RISCOSWimpFlag) fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */ #endif #ifdef __INSURE__ /* Insure++ is a memory analysis tool that aids in discovering * memory leaks and other memory problems. On Python exit, the * interned string dictionary is flagged as being in use at exit * (which it is). Under normal circumstances, this is fine because * the memory will be automatically reclaimed by the system. Under * memory debugging, it's a huge source of useless noise, so we * trade off slower shutdown for less distraction in the memory * reports. -baw */ _Py_ReleaseInternedStrings(); #endif /* __INSURE__ */ return sts; }

Buen Dios Todopoderoso ... es lo suficientemente grande como para hundir el Titanic.

Parece que Python hizo el truco de "Introducción a la Programación 101" y simplemente movió todo el código de main() a una función diferente, lo llamó algo muy similar a "main".

Aquí está mi pregunta: ¿este código está terriblemente escrito o existen otras razones para tener una función principal corta?

Tal como está ahora, no veo absolutamente ninguna diferencia entre hacer esto y simplemente mover el código en Py_Main() de nuevo a main() . ¿Me equivoco al pensar esto?

    
pregunta riwalk 20.06.2011 - 23:23
fuente

11 respuestas

137

No puede exportar main desde una biblioteca, pero puede exportar Py_Main , y luego cualquiera que use esa biblioteca puede "llamar" a Python muchas veces con diferentes argumentos en el mismo programa. En ese momento, python se convierte simplemente en otro consumidor de la biblioteca, poco más que un contenedor para la función de biblioteca; llama a Py_Main como todos los demás.

    
respondido por el Rob Kennedy 20.06.2011 - 23:35
fuente
42

No es que main no sea tan largo como debería evitar que cualquier función sea demasiado larga. main es solo un caso especial de función. Las funciones más largas se vuelven muy difíciles de asimilar, disminuyen la capacidad de mantenimiento y generalmente son más difíciles de manejar. Al mantener las funciones (y main ) más cortas, generalmente mejora la calidad de su código.

En su ejemplo, no hay ningún beneficio en absoluto al mover el código fuera de main .

    
respondido por el Mark B 20.06.2011 - 23:43
fuente
28

Una razón para hacer que main() sea corto involucra pruebas de unidad. main() es la única función que no puede probarse por unidades, por lo que tiene sentido extraer la mayoría del comportamiento en otra clase que pueda probarse por unidades. Esto va de acuerdo con lo que dijiste

  

Escribir código modularizado y seguir el principio de responsabilidad única permitió que mi código se diseñara en "grupos", y main () no sirvió de nada más que un catalizador para ejecutar el programa.

Nota: obtuve la idea de aquí .

    
respondido por el Chance 21.06.2011 - 00:38
fuente
16

Rara vez es una buena idea que main sea largo; como con la función (o método) cualquiera , si es larga, es probable que no tengas oportunidades para refactorizar.

En el caso específico que mencionas anteriormente, main es corto porque toda esa complejidad se calcula en Py_Main ; Si quieres que tu código se comporte como un shell de Python, puedes usar ese código sin demasiados problemas. (Debe tenerse en cuenta así porque no funciona bien si pones main en una biblioteca; suceden cosas extrañas si lo haces).

EDITAR:
Para aclarar, main no puede estar en una biblioteca estática porque no tiene un enlace explícito y, por lo tanto, no se vinculará correctamente (a menos que lo coloque en un archivo objeto con algo al que se haga referencia, que es simplemente horrible!) Las bibliotecas compartidas generalmente se consideran similares (de nuevo, para evitar confusiones), aunque en muchas plataformas, un factor adicional es que una biblioteca compartida es solo un ejecutable sin una sección bootstrap (de la cual main es la última y la parte más visible).

    
respondido por el Donal Fellows 20.06.2011 - 23:43
fuente
6

Main debe ser corto por la misma razón que cualquier función debe ser corta. El cerebro humano tiene dificultades para mantener grandes cantidades de datos no particionados en la memoria al mismo tiempo. Divídalo en partes lógicas para que sea más fácil de digerir y razonar para otros desarrolladores (¡y también para usted!)

Y sí, tu ejemplo es terrible y difícil de leer, y mucho menos mantener.

    
respondido por el Ed S. 21.06.2011 - 00:48
fuente
1

Algunas personas disfrutan de más de 50 funciones que no hacen nada más, pero envuelven una llamada a otra función. Prefiero la función principal normal que hace la lógica del programa principal. Bien estructurado por supuesto.

int main()
{
CheckInstanceCountAndRegister();
InitGlobals();
ProcessCmdParams();
DoInitialization();
ProgramMainLoopOrSomething();
DeInit();
ClearGlobals();
UnregisterInstance();
return 0; //ToMainCRTStartup which cleans heap, etc.
}

No veo ninguna razón por la que deba envolver nada de eso dentro de un envoltorio.

Es puramente un gusto personal.

    
respondido por el Coder 21.06.2011 - 10:50
fuente
1

Es una buena práctica mantener TODAS sus funciones cortas, no solo las principales. Sin embargo, "corto" es subjetivo, depende del tamaño de su programa y del idioma que esté utilizando.

    
respondido por el Mike Miller 21.06.2011 - 16:40
fuente
0

No hay ningún requisito para que main sea de ninguna longitud, excepto los estándares de codificación. main es una función como cualquier otra, y como tal, complejidad debe estar por debajo de 10 (o lo que digan sus estándares de codificación ). Eso es todo, cualquier otra cosa es más bien argumentativa.

edit

main no debería ser corto. O largo. Debería incluir la funcionalidad que debe realizar en función de su diseño y cumplir con los estándares de codificación.

En cuanto al código específico en tu pregunta, sí, es feo.

En cuanto a tu segunda pregunta, sí, estás equivocado . Mover todo ese código de vuelta a main no le permite usarlo modularmente como una biblioteca al vincular Py_Main desde afuera.

Ahora estoy claro?

    
respondido por el littleadv 20.06.2011 - 23:29
fuente
0

Aquí también hay una nueva razón pragmática. Manténgase en corto principal desde GCC 4.6.1 Changelog :

  

En la mayoría de los objetivos con la sección nombrada   soporte, funciones usadas solo en   startup (constructores estáticos y    main ), funciones utilizadas solo en exit y   Las funciones detectadas para ser frías son    colocado en un segmento de texto separado   subsecciones . Esto extiende la   -las funciones de orden de función y es controlado por el mismo interruptor. los   El objetivo es mejorar el tiempo de inicio de   programas grandes de C ++.

Lo destacado por mí.

    
respondido por el Peter G. 28.06.2011 - 11:15
fuente
0

No asuma que solo porque un poco de software es bueno, todo el código detrás de ese software es bueno. Un buen software y un buen código no son lo mismo e incluso cuando un buen software está respaldado por un buen código, es inevitable que en un gran proyecto haya lugares donde se caigan los estándares.

Es una buena práctica tener una función corta de main , pero eso es realmente un caso especial de la regla general de que es mejor tener funciones cortas. Las funciones cortas son más fáciles de entender y más fáciles de depurar, además de adaptarse mejor al tipo de diseño de "único propósito" que hace que los programas sean más expresivos. main es, quizás, un lugar más importante para cumplir con la regla, ya que cualquier persona que quiera entender el programa debe entender main , mientras que las esquinas más oscuras de la base de código pueden visitarse con menos frecuencia.

Pero, el código base de Python no está empujando el código a Py_Main para cumplir con esta regla, sino porque no puede exportar main de una biblioteca ni llamarlo como una función.

    
respondido por el Jack Aidley 27.05.2014 - 00:22
fuente
-1

Hay varias respuestas técnicas arriba, dejemos eso a un lado.

Un main debería ser corto porque debería ser un bootstrap. El principal debe instanciar un pequeño número de objetos, a menudo uno, que hacen el trabajo. Como en cualquier otro lugar, esos objetos deben estar bien diseñados, ser cohesivos, acoplados de manera flexible, encapsulados, ...

Si bien puede haber razones técnicas para tener una llamada principal de una línea a otro método de monstruo, en principio estás en lo correcto. Desde la perspectiva de la ingeniería de software, nada se ha ganado. Si la elección es entre una línea principal que llama a un método de monstruo y la principal es un método de monstruo, este último es fraccionalmente menos malo.

    
respondido por el Concrete Gannet 21.06.2011 - 02:06
fuente

Lea otras preguntas en las etiquetas